Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Re-evaluation of radiation-energy transfer to an extraction solvent in a minor-actinide-separation process based on consideration of radiation permeability

Toigawa, Tomohiro; Tsubata, Yasuhiro; Kai, Takeshi; Furuta, Takuya; Kumagai, Yuta; Matsumura, Tatsuro

Solvent Extraction and Ion Exchange, 39(1), p.74 - 89, 2021/00

 Times Cited Count:2 Percentile:10.1(Chemistry, Multidisciplinary)

Absorbed-dose estimation is essential for evaluation of the radiation feasibility of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha ray depends upon the emulsion structure, and that from beta and gamma ray depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.

Journal Articles

Hydrogen absorption behavior on zirconium under $$gamma$$-radiolysis of nitric acid solution

Ishijima, Yasuhiro; Ueno, Fumiyoshi; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi, 16(2), p.100 - 106, 2017/05

Zirconium (Zr) has been used as a structural material at the spent nuclear fuel reprocessing plant in Japan because of its excellent corrosion resistance against nitric acid solution. And the radiolytic hydrogen is known to be generated in the spent nuclear fuel solution. Zr is known to be highly susceptible to hydrogen embrittlement. Therefore, evaluating the radiolytic hydrogen absorption behavior of Zr in nitric acid solution (HNO$$_{3}$$) is essential. In this study, immersion tests were conducted on Zr in nitric acid solutions under $$gamma$$-ray irradiation to evaluate its radiolytic hydrogen absorption behavior. Results showed that hydrogen concentration on Zr increased both in 1-3 mol/L HNO$$_{3}$$ and pure water at 5 and 7 kGy/h after immersion. The amount of hydrogen absorption on Zr under $$gamma$$-ray irradiation had a direct correlation with the radiolytic hydrogen generation value in HNO$$_{3}$$. The results of glow discharge optical emission spectrometry, thermal desorption spectroscopy, and X-ray diffraction result shows that the absorbed radiolytic hydrogen generated a hydride on the surface of Zr.

JAEA Reports

Proceedings of the Third CSNI Workshop on Iodine Chemistry in Reactor Safety; September 11-13, 1991, Tokai-mura, Japan

Ishigure, Kenkichi*; Saeki, Masakatsu; Soda, Kunihisa; Sugimoto, Jun

JAERI-M 92-012, 522 Pages, 1992/03

JAERI-M-92-012.pdf:15.92MB

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1